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Abstract

This article develops the analytical rigorous solution of a fundamental problem of heat conduction in anisotropic
media. The steady-state temperature and heat flux fields in a thin-layer medium with anisotropic properties subjected to
concentrated embedded heat sources or prescribed temperature on the surface are analyzed. A linear coordinate
transformation is used to transform anisotropic thin-layer problems into equivalent isotropic problems without com-
plicating the geometry and boundary conditions of the problem. By using the Fourier transform and the series ex-
pansion technique, exact closed-form solutions of the specific problems are presented in series forms. The complete
solutions of heat conduction problems for the thin-layer medium consist only of the simplest solutions for an infinite
homogeneous medium with concentrated heat sources. The numerical results of the temperature and heat flux distri-
butions are provided in full-field configurations. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent decades, many papers have studied the mechanical behavior of anisotropic materials in applied science and
engineering [1]. As a result of interesting usage of anisotropic materials in engineering applications, the analytical
solutions for multidimensional heat conduction problems in layered media have attracted considerable attention re-
cently [2]. To date, few investigations of temperature distribution or heat flux fields in anisotropic media have appeared
in the open literature. The mathematical difficulties for anisotropic heat conduction problem are caused by the complex
form of the governing partial differential equation or by the boundary conditions associated with the problem. A survey
of some of the relevant anisotropic heat conduction problems is given by Sharma [3] and Tauchert and Akoz [4]. They
solved orthotropic heat conduction problem dealing with infinite or semi-infinite or slab solids by Fourier transfor-
mation. Tauchert and Akoz [5] solved the temperature fields of a two-dimensional anisotropic slab using complex
conjugate quantities. Mulholland and Gupta [6] investigated a three-dimensional anisotropic body of arbitrary shape by
using coordinate transformations to principal axes. Chang [7] solved the heat conduction problem in a three-dimen-
sional configuration by conventional Fourier transformation, and then he indicated that the anisotropic heat con-
duction governing equation could be transformed to the isotropic one. Poon [8] first surveyed the transformation of
heat conduction problems in layered composites from anisotropic to orthotropic. Poon et al. [9] extended coordinate
transformation of the anisotropic heat conduction problem to isotropic one. Zhang [10] developed a partition-matching
technique to solve a two-dimensional anisotropic strip with prescribed temperature on the boundary.

In earlier papers, analytical solutions of anisotropic heat conduction problems have been limited to simple or special
cases [3]. In conventional studies of a multidimensional anisotropic medium subjected to distribute temperature or heat
flux in or on the media, the analytical solution was obtained by Fourier transformation. It is not possible to find in most
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Nomenclature
cp specific heat (J/kg K) X0, Yo location of the concentrated heat source (m)
Jo fy heat fluxes (W/m?) X, Y coordinates in the transform domain (m)
h thickness of the slab (m) Greek symbols
H thick of the slab after transformation (m) . .
.. . 0 Dirac delta function
K thermal conductivity matrix o Fourier transform parameter
ki thermal conductivity coefficients (W/m K) density (ke/m?)
0 coordinate transformation matrix p ensity (kg/m
q1, g2  coordinate transformation coefficients Subscript
T temperature (K) m material 1 or material 2
X,y coordinates (m)

cases the general solutions with respect to each of the spatial variables to satisfy partial differential equations of an-
isotropic heat conduction equations and boundary conditions. The work of Yan et al. [11] studied two layered isotropic
bodies with homogeneous form of the conduction equation, and the Green function solution was used to incorporate
the effects of the internal heat source and nonhomogeneous boundary conditions. They obtained the series solutions for
three-dimensional temperature distribution by Fourier transformation, Laplace transformation and eigenvalue meth-
ods. Consequently, it is more difficult to get general analytic solutions satisfying all the boundary conditions for
multilayered anisotropic heat conduction problem because of the continuity of temperature and heat flux on the in-
terface and the cross-derivatives in the governing equation. Therefore, the cross term, which is the crux in solving the
anisotropic heat conduction problem, is very troublesome to treat when one uses conventional solution techniques for
solving isotropic heat conduction problems. Due to the mathematical difficulties of the problem, only a few solutions
for heat conduction in anisotropic media have appeared in the literature and much more work remains to be done.

In this study, a two-dimensional heat conduction problem for an anisotropic thin-layer medium is investigated. One
of the objectives of this study is to develop an effective analytical methodology to construct the full-field solution for this
problem. Investigations on anisotropic heat conduction problems are tedious due to the presence of many material
constants and the cross derivative term of the governing equation. It is desirable to reduce the dependence on material
constants in advance of the analysis of a given boundary value problem. A special linear coordinate transformation is
introduced in this study to simplify the governing heat conduction equation without complicating the continuity and
boundary conditions of the problem. Based on this transformation, the original anisotropic thin-layer problem is
converted to an equivalent isotropic problem with a similar geometrical configuration. Explicit analytical solutions for
the temperature and heat flux are expressed in a series form. Numerical results of the full-field distribution for con-
centrated heat sources in the thin-layer medium or prescribed temperature on the surface are presented in graphic form
and discussed in detail.

2. Basic theory of linear coordinate transformation

Consider an anisotropic material that is homogeneous and has constant thermo-physical properties. The governing
partial differential equation for the heat conduction problem in a two-dimensional anisotropic solid subjected to dis-
tributed heat sources of intensity g(x;,¢) is given by

T 1 _ pc, T

paatgn ) =P =12 =12 !
/ axian+k22 (x t) k22 6t ! J ( )

in which K is the thermal conductivity matrix

K= |k fo Kij = K 2)
e
k22

where k; are thermal conductivity coefficients. p and ¢, are the density and specific heat, respectively. Based on irre-
versible thermodynamics, it can be shown that ky1k» > k3, in addition to ki, k» > 0.
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In order to eliminate the cross-derivatives and reduce the governing equation to a canonical form, a special linear
coordinate transformation is introduced as

X=x+qy _
{200 o t=on o)

B b elby

and Q is called the coordinate transformation matrix. The 2 x 2 matrix Q should have the following characteristics:

where

(1) The cross-derivative term of the governing equation can be eliminated.

(2) The governing equation can be converted to an isotropic problem.

(3) In connection with the thin-layer problem, the coordinate transformation matrix Q can keep the two domains re-
maining perfect contact and bounded interface remaining plane.

(4) In the thin-layer problem, the position along the interface between two adjacent material points maintains the same
location and no sliding or mismatching occurs along the interface.

By using the linear coordinate transformation as indicated in Eq. (3), the governing equation becomes

T 1 pe, OT

Ki' iI¥YSj Ay Az 7 i t 4
/Oy 08,0 * ky 8(ent) = kay Ot “)
It is obvious that if we set
KijOuQy; = QkiKiij—l; = Gy (5)
where ¢ is an unknown constant and yet to be determined. Then Eq. (4) can be rewritten to the canonical form as
Fr *T 1 pc, OT
W Tt = g w (6)

The coordinate transformation matrix @ and the constant ¢ are determined based on Eq. (5) and the results are

k kiiky — k? kiky — i
Q:{l ql] g = -2 _ Vhikn —kyy - kiks — Ky (7)

0 ¢ ky ko B ks,

3. Solutions for thin-layer medium subjected to arbitrary thermal loadings

Consider a steady-state heat conduction problem of an anisotropic thin-layer medium that has a slab with thickness
h and is perfectly bounded to a half-plane. The x-axis is taken to be the interface. The slab (material 2) occupies
—h < y < 0, while the underlying half-plane occupies 0 < y < co. The heat conduction equations and the corresponding
heat fluxes in the anisotropic thin-layer medium are

Kn e, ke, 8T, 1
) —8&m\X,yY) = 0 m= 172 8
kg’) o2 kég”) oxdy 02 kyz’” () ®)

w 0T, 0T,

fv(m = _kn o k12 ay (9)
o7, o7,

(m) — (m) (m) m 10

Sy 2y (10)

where g, (x,y) are the heat sources inside the medium, £ and fy('”> are the heat fluxes in the x and y directions, re-
spectively.

In numerous cases of practical importance, we consider cases that heat sources act inside the anisotropic thin-
layer medium or temperature apply on the boundary. In this article, we will investigate the full-field distributions of
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temperature and heat fluxes due to a concentrated heat source applied in the slab or the half-plane, and a concentrated
temperature applied on the top surface of the slab. The temperature and heat flux fields derived for the concentrated
heat source problem can be employed in constructing more general solutions concerning distributed sources in a
continuous or discontinuous manner in the thin-film medium. The coordinate transformation method developed in
Section 2 will be used in the following studies to transform the anisotropic heat conduction problem in a thin-layer
medium to an equivalent isotropic problem.

3.1. Thin-layer medium with a concentrated heat source applied in the slab

First, let us consider the case that a concentrated heat source is applied in the slab as shown in Fig. 1(a). The
concentrated heat source is located at (x,y) = (0, —y) and is given by

gi(xy) =0 &(x,y) = qod(x)o(y + ) (11)
The corresponding governing equations of two materials are

kY @1 kY @ 9T

42t L =0 (12)
Ky Ox Ky xdy Oy

kY O |k @L | L 1

u ¥ 72 Z12 i R =0 13
0 o2 T 0wy e ey (13)

The boundary condition on the top surface of the slab is

To(x, —h) = 0 (14)
\
@| h e (0,—Y)
x A
M)
(a) YV v
e (—X, -Y
ol (-X,,— Y,)
X N

M

Y
(b) Y

Fig. 1. The geometric configuration of the anisotropic thin-layer medium in the (x,y) coordinate (a) and (X,Y) coordinate (b).
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In addition, perfect thermal contact between the slab and the half-plane is assumed. The continuity of temperature
and heat flux along the interface requires

Ti(x,0) = T (x,0) (15)
1 aTl 1 6Tl 6T2 aTZ
kiz)a‘Fk;z)@:kg)a_x"'kg)a_y y=0 (16)

By introducing the linear coordinate transformation

g — Q™ =12 (17)
The boundary value problem as indicated in Egs. (12)—(16) can be transformed to the (X, Y) coordinate system as
T, T,
o o (18)

62T2 62T2 qo

4= X +X)0(Y +Y,) = 1
o0X2 + or?2 Czkg) 5( + 0)5( + 0) 0 ( 9)
L(X,~H) =0 (20)
T1(X,0) = Tr(X,0) (21)
oT, o7
el T kg O @)
where

W), .
(ks2)’
and H = qu)h, Xo = q(lz)y(,, Yo = qf)yo. The solutions of two boundary value problem; i.e. Egs. (12)-(16) and (18)—(22),
are identical to each other from the connection of Eq. (17). The location of the concentrated heat source has been
shifted to (X, Y) = (—Xp, —Yp). The thickness of the slab is changed from / to H but the constant temperature boundary
still remains on a straight line ¥ = —H. Furthermore, the new perfect thermal contact interface between the slab and the
half-plane remains a straight line ¥ = 0 and the continuity condition of heat flux has been simplified from Eqgs. (16)—
(22). The boundary value problem described by Egs. (18)—(22) is similar to the thin-layer problem for an isotropic
material with a geometric configuration as shown in Fig. 1(b).

The boundary value problem indicated in Egs. (18)—(22) will be solved by the integral transform technique. The
expressions for the field variables will be found by applying a Fourier transform over the spatial coordinate X with
parameter w. The transform pairs for an arbitrary function f (X, Y) is defined as

A o . 1 RN .
fon = [ reneriar s =0 [ fonetdo (24)
where i = vV—1.

Apply the Fourier transform to Egs. (18)—(22) and the results are
T, -
—aYZ - U)2T1 =0 (25)
T (Y +Y0) o
v — O\ T 0 e, 2
52~ @ h=—a i (26)
Th(w,—H) =0 (27)
Ti(,0) = Ty(,0) (28)

o7, oT

kg 5y =knay) 5y Y =0 (29)

The solutions of temperature fields in the Fourier transformed domain can be solved to obtain
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/7\11 (w, Y) =H e"“’y (30)
Ty(w,Y) = Hye " + Hye"” (31)

where

90 eiu)Xg ewao _ efw(ZHfYo)

= 32
: 2c2k§§)w By + et (32)
iwXy Yy —oYy
H = — qoem Bye”™ + ﬁle —20H (33)
2esk) @ Byt Bre
10Xy Yy —wYy
= qoe(z) ﬂZe +ﬂlze'H (34)
2erky) @ Byt Bre
in which
1 k(l)q(l) 1 k q(l
- <1 ) ) ke 5
2 kgz)qg ) 2 kzz)q(z )

with the condition that 8, > f3,. Because of the term f8, + 8, €72*¥ in the denominators of Egs. (32)—~(34), it is impossible
to invert the Fourier transform directly. The Taylor series expansion is used which results

1 _ i = B —2nwH
By + preet B, ;( 2l (ﬁz) 36)

The temperature filed of the thin-layer medium in the transformed domain can be rewritten as

= _ 4o€

iwXy 1 0
| —

Z ( ) —(u(Y+Y0+2nH) _ e—w[Y—Yo+2(n+l)H]] (37)

=0

o B>
7 40 glolo | & > —oo(|Y+ Y| +2nH) ( B ) eV —Yol+20t)
T = + 0
262k22 nz: Z Bs

0 n=0

_ Z( ) (gl) —o[—|Y=Y|+2(n+1)H] _ i( ) (gi)nﬂ [=Y+Yo[+2( n+1)H]:| (38)

n=0 2 n=0

202 k22

Since the solutions in the transformed domain expressed in Eqgs. (37) and (38) are mainly exponential functions of ,
the Fourier inverse transformation can be performed term by term. Take the Fourier inverse transformation of Egs.
(37) and (38) and substitute coordinate transformation relation Eq. (17), then we get the exact full-field steady state
temperature distributions in the thin-film medium expressed as follows

= 4Tl',Czk22 /72; (ﬂz) {[x+q1 y+q(1 >yo} + [f]z y+q2>(yo+2nh)] }

) ( ) { 3 4 2}
E x+ + + 2(n+1)h 39
4nc2k22 B 2 5, [ 4y +q; yo] [qz y—aq5 (o — )} (39)
T LSty (ﬁl) {{ 7 )T [ (1 + 0] +2 h)]z} < )M
= x+ + + + 30| + 2n -
? 4chzk22 pry B, Ay By 4nczk§§) o 0

2 2
xln{[x+q<2>(y+y0)] + [q<22>(‘y7y0\+2nh)] }Jr @ < ) ln{[x+q§2)(y+yo)]
4dnerkyy WS 0

R R DL (3 B )

4th2}’€22 =0

[l =20+ 0]} (40)



M.-H. Hsieh, C.-C. Ma | International Journal of Heat and Mass Transfer 45 (2002) 4117-4132 4123

In Egs. (39) and (40), it is interesting to note that each term in the infinite series represents the solution for a
concentrated heat source ¢, in an infinite homogeneous anisotropic body. Thus the temperature fields of the slab or the
half-plane are the summation of the contributions by concentrated heat sources located at different posmons in an
infinite medlum It is found that the locations of all the heat sources will pass through straight lines x + q, y + qg ) w=0
and x + q (y + ) = 0. There is only one term in the infinite series of Eq. (40) representing the applied concentrated
heat source g in the infinite medium at (x,y) = (0, —)p). All the remaining terms are image concentrated heat sources
that are induced to satisfy the boundary and interface conditions. Therefore, the mathematical method used in this
study is referred to as the method of images. The advantage of this method is that the solutions of heat conduction
problem with complicated geometric configuration can be obtained by superposing the simplest solution in an infinite
medium. It is noted that the locations of the image heat sources depend only on the material properties and the ge-
ometry of the thin-layer medium.

The corresponding heat flux f, is represented as follows

f(l)
Jy

) |, (2)
qo q§ )1 1 ([;1) ‘qz v+ gy (J’o+2nh)’
pie) S i
o2k B n=0 ba (x+q(11)J’+q52)yo) + [q;l)y+q(22)(yo+2nh)}
)qz y—q I —2(n+ )h})

+ 2
(x —+ q1 y + qiz)yo) + {qél)y — qéz) o —2(n+ l)h]}

(41)

o0 n (2)

f<2>_,@‘1<22) iy ﬂF‘qz [|y+yo|+2nh]‘

) Z N @) 2 @) 2
n=0 [Hq (y+yo)] +{qz [|y+yo|+2nh]}

a1y =) +2(n+ l)h]‘ 2 +i(, 1)n<§l>n+1

2
[r+d? v+ )] + {a@1 =) + 20+ )1} |
48711y = 0] + 20| 01— [+ 30l + 201+ 1]

e+ a0+ 0]+ {a0y — ol + 20} : [r+a2 0+ 0)] o+ {1 b+l + 200+ 1)
“2)

where upper symbol in the terms with F is for the situation 0 > y > —y)y, and lower symbols are for —yy > y > —h,

respectlvely For the isotropic thin-layer medium, k{}’ = &), ki? = k) and kY = k2 =0, hence ¢\" = ¢/’ = 0 and

q( q2 =1, Egs. (39)—(42) are reduced to the correspondent isotropic solutions.
If we set the heat conductivity coefficients of the half-plane to the following conditions

K=o &) -0 k) —o0 (43)

then the problem will be reduced to the anisotropic slab with embedded point heat source and insulated on the bottom
of the slab. From Egs. (7) and (35) and results

Br=P=3 (44)

The temperature and heat flux fields in the slab can be obtained from Egs. (40) and (42) as follows
2 2
{ v+ a0 0)] + [a -+ ol + 20m)] }

e 2 ?
4merkyy | 05 { [+ a0+ )]+ [a (v =30l = 200+ 1)) }

- {[X+q(2>(y+yo)} [(2)(\y yo|+2nh)}}

= { [x+ qﬁ”(wy()ﬂ2 + a8y + 3ol = 201+ 1)h)]2}
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PO Y S (-1 g 1y + 3] + 20t
y = T

S [x 420+ 0]+ {g Ly ol + 200}
6210~ 30) + 201+ V)] Sy 9811y = 30| + 201
[t a?orw)] + {20 0n} | T [ )]+ (a0 -l + 200}

¢ =y -+l + 20+ D)

[x +47 (v +y0)]2 + {qg2>[ — 4wl 420+ 1)/1}}2 (46)

It is interesting to note that the infinite series solutions presented in Eqs. (45) and (46) can be expressed explicitly
with simple functional forms as follows

qo T T
Ih=————<{In cosh———(x+ —h— +cos—(y—h—
2 Snczkg) { { 2q2 B ( 91 (v J/O)) o (v J’o)}

—In [COSh2q<2)h (x+q1 (yfh*yo))Jrcos—(y h—y)| +1n

2h

—cosh——— 2q(2>h (x + q1 (y —h— y0)>

} (47)

+cosﬂ(y—h+yo)

—1In {cosh qz h<x+q1 (y—h—yo)) +cosﬂ(y—h+y0)

£ = 0 < n ) sin(m/2h)(y — h — )
vy 2) @y, g _ —h—
cosh(r/gs"h) [x + ¢ (v = h = 30)| = cos(r/h) (v = h = )
N sin(r/2h)(y — h + )
cosh(n/g" 1) [+ " (v = h = 30)]| = cos(m/m)(y — h + )

3.2. Thin-layer medium with a concentrated heat source applied in the half-plane

The problem for a concentrated heat source g, applied in the half-plane is considered. The location of the con-
centrated heat source in the half-plane is (x,y) = (0, ). Hence we have

g1(x,y) = qo0(x)d(y — ) &(x,y) =0 (49)
and the partial differential equations of the problem are

627 k(l) 0*1 0*1 1
11 1 12 1 1

2= —— 4+ — + g =0 50
1) @xz kg) axay ay ]( ) ( )

K3 82T, é 11, 0T, _

e Ve e G
If the temperature on the surface of the slab vanishes, the boundary condition is
Th(x,—h) =0 (52)

The perfect thermal contact condition between slab and half-plane is also assumed. Thus at the interface of the thin-
layer, the continuity conditions in Egs. (15) and (16) are used. Follow the similar procedure that is used in the previous
case, the linear coordinate transformation (Eq. (17)) is introduced and the governing equations in the (X, Y) coordinate
are

62T1 6 T1 qo
e T +—F k 5(X X0)o(Y —Y) =0 (53)
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Fn, O

e tor T 34

where

2
1 1 1
KR — (kD)
o - (55)

()

and X; = qil) o, Yo = q(zl) 1. The boundary and continuity conditions are the same as those given in Egs. (20)-(22).
Use the method as described in the previous case, and the complete temperature solutions in the transformed domain
are

R e*iUJXO e*iUJXO 00 -1 n+1 efiw)(o 00 1 n
T, = 90 o e—u)\Y—Yg\ + 90 o n e—ru(Y+Y0+2nH) _ 90 o Z n e—(/)[Y+Y0+2(n+l)H] (56)
2¢iky, @ 2¢iky, o 4= \ 1+ 1 2ciky) o =5 \ 1+ 1
—iwX S n+l 00 n
& qo€™ " e—0lY =% (’7 -1 > —o|Y+Yy+2nH| (’7 -1 ) —o|Y+Y+2(n+1)H|
T —=—— + 0 + I e 0 — e 0
o 4c1k£zw(n 2 2 =
_ %) n+l 00 n
q0€ oo —o|Y+Y| (I/I -1 ) N —o|Yg—Y+2nH| n— 1 —o|Yy—Y+2(n+1)H|
——FF—m—=1)e o+ — e - — ] e 57
4clk£12)w( ) ; n+1 ; n+1 (57)
where
k(l) (1
= %)
k'

The temperature fields in the (x,y) coordinate can be obtained by the Fourier inversed transform term by term and
the coordinate transformation relation in Eq. (17). The complete solutions of temperature distribution for the aniso-
tropic thin-layer medium are presented as follows

h=- " Ln{[X+q§”(yyo)r+[q(z”(yyo}}+Z(n+1>n+lln{[x+qgl)(yyo)r+[qg)(y+y°)

41'C61k22 n=0

s2g2a] -3 () w{ e -]+ [0+ 20 1>q;2>h}2}} (59)

n=0 I/’+1

9
nL=- 0(1){('7—1—1)

87{01]{22

) 00 n+1 )
ln{<x+ql y=ai"n) + (a8y = ai"n) }+Z<n+1> ln{(x+q52)y—q5”yo)

n

2 1 2 2
+ [qf)y +43y + 2nq§2)h] } (n — ) In { x+ g0y - q(l”yo) + [qéz)y +am +2(n + 1)(1(22)4 }} }

00 n+l1
_ 9 _ @, 1) 2 ) (1 @, m 2
+8n01k(1){(]1 1)[ln{(x+111 v=ai"n) + (v +ain) } Z<n+1) 1n{<x+q1 v=a"n)

22 n=0

2 o0 _ ] n 2 2
+ [qél)yo -y + anéz)h] } -> (%) In { (x +qiy - q(l”yo) + [q(z”yo — ¢y +20n+ 1)‘1(22)}‘} H }

n=0

(60)

Note that the first term in Eq. (59) without summation represents the concentrated heat source g, applied in the
anisotropic half-plane at (x,y) = (0, ), and the summation terms provide the image concentrated heat sources that are
induced to satisfy the boundary and interface conditions. Again each term in Egs. (59) and (60) represents the solution
for a concentrated heat source applied in an infinite anisotropic medium.

The corresponding solutions for the heat flux f, can be obtained as
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W,
s Q ’612 v yo)’
YT 2nmoe 2 2
! [Hqi”(y*yo)} - [q(zl)(y*)@)]
Sy o) -+0) + 202
+ 1 2 2
=0 N [x +q\ (v yo)} - [q(z”(y + ) + 2nq(22)h}
x /1 “](zl) (v +w) +2(n+ 1)q§2)h‘
* Z <1 + 1) 1 2 (61)
w0 A [x+q5)(y—yo)} +{q§)(y+yo)+2(n+1)q< )h}
Y |57 — |
5= ekl tr+1) @ @
Cify [x+q1y—q1 yo] +[q2y qz yo}
> (’7— 1>M ‘q(zz)y+qz o+ 2nq5h|
_ : .
=N [x +qly - QE')yo} + [‘1(22)y +ay 0+ 2nq§2>h}
> /n—-1\" ’%J""qz Yo +2(n+1)q )h’
2 (n +1 ) @ 1) @ m @,1?
n=0 [x+q1 Yy —q yo] +[qzy+q2 W +2(n+ 1)g; h}
‘% v+a % ‘
=1 @ )
[x““hy—‘h J/O] “'[‘12)""‘12)’}
> ('7 ~1 >M 430 = 45"y + 20"
_ 1 .
=N [x +qy - q(l”yo} + [q(z')yo —gy+ anf)h]
= (n—1)" ’qzy — ) y+2(n+1)q§2)h(
+ ; (62)
—\n+1 ) ) o) &)
n= x+q7y — gy g v —q,y+2n+1)g; h

where the upper symbol =+ in the first term of Eq. (61) is for yy = y > 0, and the lower symbol is for co > y > y.

3.3. Thin-layer medium with a prescribed temperature on the surface of the slab

Consider the problem of a prescribed temperature on the top surface of the slab. The heat conduction equations of
the thin-layer medium are given by

(m) azT (m) a Tm

k (m) OZT,,,
11 a 2 12 a 6

+ ky

=0 m=1,2 (63)
If the temperature distribution along the surface of the slab is a delta function, then

Ty(x, —h) = Tyd(x — xo) (64)

The perfect thermal contact condition between the slab and the half-plane is also assumed. There are no heat source
inside the slab and the half-plane. Consequently, the continuity conditions indicated in Eqgs. (15) and (16) are used. By
using the coordinate transformation, the associated problem in the (X, Y) coordinate is given as follows

62 Tm 62 ]-;ﬂ

e Torr 0 M= (65)
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(X,—H) = THo(X — Xop) (66)

T1(X,0) = T»(X,0) (67)
oT, ) 0T

Wiy o (65

where H = q<2)h and Xy = xp — qsz)h. Apply the Fourier transformation on Eqgs. (65)—(68), then we have

AT, -
m — _ 1 2
syp — @ Tu=0 m=1, (69)
Ty(w, —H) = Ty (70)
T (®,0) = Ts(w,0) (71)
oT, oT:
Wel' 5 =K 57 ¥ =0 7

The temperature fields in the Fourier transform domain are

1 (/-1
T _ 2T eleU e —o[Y+(2n+1)H| 73
et () o2
0 n 00 n— 1 n+l
—iwX —(/)\Y+(2n+1)H\ 1\ —o|Y—(2n+1)H|
=Te O{Z;f ;( 1) (—n+l) e } (74)
where
1 1
_ kygy
2) (2
kgz)q(z)

The full-field temperature and heat flux distributions in the (x,y) coordinate are represented as follows

Ee () o

a8+ (2 + 1))

>[@qu9@+mf+&9u+@nquz

D PR
Z(Hl) =) a0+ ] ("l 2n 07 "

|4y + @21+ 1g{h

) @,\1° ) @,]° (75)
a1’y +4q h)] + [612 v+ (2n+1)g; h]

2
W _ 2T kg i (n - 1)" [y + 20+ 1)g¥n]

5=
boom ot (A { [ =x0) + (a"y+ q(f)hﬂz + [aly+ n+ l)q(;)h]z}z

[(x — Xo) + (‘Il”)"“% h)r

{ [(x —x0) + (qi”y + q§2>h>] y [qé”y +(2n+ l)qf)h] 2}2

(77)
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DY Pyt @n+ i)
=2l 3 (1 - :
met nzo(”“> {or=s00+ P )]+ [+ 20 0]}

[ x0) + 40+ )]

[+ a0 m] + [+ n e om] '}

+n§; (ZTDM {[(x_x())

(= x0) +aP 0+ )]

[0y~ 20+ 18]

+ ¢+ h)]2 + [P - @+ 1)h]]2}2

7 — (78)
{4 a0+n] + [ @oson] )

4. Numerical examples and discussions

By using the analytical solutions developed in the previous sections in conjunction with a personal computer, ac-
curate numerical calculations of temperature and heat flux in the y-direction are obtained via a computer program in a

Table 1
Coefficient of thermal conductivity (W/m K)
Material
1 2
kit 83.6 76.5
k1o 18.1 20.6
k2 20.8 52.7

- ————————————— 7 czlé?/
%

K2 k%) k) =765,206,527
/ \

KV kY kY =836,181,208
20 1 1 1 1 1

-1.0 -0.5 -0.0 0.5 1.0 1.5
x/h

Fig. 2. Temperature distribution of the thin-layer medium with a concentrated heat source applied in the slab.
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Fig. 3. Heat flux in the y-direction of the thin-layer medium with a concentrated heat source applied in the slab.
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kl(;)’ /(12, k2

=836,181, 208

2.0
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-0.5 -0.0 0.5 1.0 1.5

x/h

4129

few minutes. For the purpose of illustrating the thermal anisotropy, an orthorhombic crystal is considered and the
pertinent material properties are listed in Table 1 [12]. For the purpose of accurate evaluation of temperature and heat
flux fields far away from the heat source, the terms in the series solutions must take a large number. Usually hundred of
terms in the series solutions are used for the numerical calculation.

Figs. 2 and 3 show the full-field distributions of temperature and heat flux in the y-direction for a concentrated heat
source applied within the layer at (0,—0.4%), respectively. The temperature on the surface of the layer y = —h is
vanished. The temperature and the flow of heat in the anisotropic material occur primarily in the x-direction owning to
the larger thermal conductivity in the direction (k;; > k»;). In anisotropic media, the symmetry for the temperature and
heat flux fields that is found in the isotropic material is distorted due to the material anisotropy. It is shown in the

y’h

Fig. 4. Temperature distribution of the thin-layer medium with a concentrated heat source applied in the slab.

L0

L H !, 12, 22 =76.5,206, 527\ OIO\T ck/

/ 0?0 4,
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020

1.0 [

/ 020
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2.0 _1',0 .ol,s -OI,O 075 ITO 15
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Fig. 5. Heat flux in the y-direction of the thin-layer medium with a concentrated heat source applied in the slab.

-1.0
K. k3. kY =765,206,527 | T clkgg)/
9o+

- 2010

1020

0.0
KK, k) =836,181,208
| fan fe

y/h

2.0
-1.0 -0.5 -0.0 0.5 1.0 1.5

x/h

Fig. 6. Temperature distribution of the thin-layer medium with a concentrated heat source applied in the half-plane.

figures that the temperature and heat flux in the y-direction are continuous at the interface. This also indicates that the
convergence and accuracy for the numerical calculation are satisfied. Figs. 4 and 5 depict the influence of the thermal
conductivity coefficient k, on the temperature and heat flux fields. It is evident that the negative value of kj, has a
marked influence on the temperature and heat flux distributions.

Figs. 6 and 7 are the plots of the temperature distribution and heat flux field in the y-direction with a concentrated
heat source applied in the half-plane, respectively. The effects of material anisotropy are clearly illustrated in the figures.
As noted preciously, the temperature and heat tend to flow away from the hot region in the direction of the greatest
thermal conductivity. Figs. 8 and 9 are the full-field distributions of temperature and heat flux in the y-direction with a
concentrated temperature applied on the top surface of the slab for a thin-layer medium, respectively.
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Fig. 8. Temperature distribution of the thin-layer medium with a concentrated temperature applied on the top surface.

5. Conclusion

A linear coordinate transformation method is introduced to solve the heat conduction problem of a thin-layer
anisotropic medium subjected to arbitrary thermal loadings applied in the medium or on the boundary surface. With
this linear coordinate transformation, the original anisotropic thin-layer problem is reduced to an equivalent isotropic
problem without complicating the boundary and interface continuity conditions. By using the Fourier transform
technique and a series expansion, analytical solutions for temperature and heat flux are presented in an explicit form. A
computational program for numerical calculation of the full-field distribution is easily constructed by using the explicit
formulation of the solutions. It is evident from numerical results that the material anisotropy has a marked influence on
the distribution of temperature and heat flux fields. The linear coordinate transformation method developed in this
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Fig. 9. Heat flux in the y-direction of the thin-layer medium with a concentrated temperature applied on the top surface.

article effectively solves the heat conduction problem in thin-layer anisotropic media. In fact, this method can be ex-
tended to solve more complicated problems and will be given in a follow-up article.
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